If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Block-Wise Weighted Least Square

From Navipedia
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


FundamentalsFundamentals
Title Block-Wise Weighted Least Square
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Advanced
Year of Publication 2011

Let's consider two linear [math]\displaystyle{ [m_1\times n], [m_2\times n] }[/math] equations systems, sharing the same unknown parameters vector [math]\displaystyle{ {\mathbf X} }[/math]:

[math]\displaystyle{ \begin{array}{l} {\mathbf Y_1}={\mathbf G_1}\,{\mathbf X};{\mathbf R_1}\\[0.3cm] {\mathbf Y_2}={\mathbf G_2}\,{\mathbf X};{\mathbf R_2}\\ \end{array} \qquad \mbox{(1)} }[/math]


where [math]\displaystyle{ {\mathbf R_1} }[/math] and [math]\displaystyle{ {\mathbf R_2} }[/math] are the covariance matrices of measurement vectors [math]\displaystyle{ {\mathbf Y_1} }[/math], [math]\displaystyle{ {\mathbf Y_2} }[/math].


Thence the two systems can be combined into a common [math]\displaystyle{ [(m_1+m_2)\times n] }[/math] system as:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf Y_1} \\ {\mathbf Y_2} \end{array} \right] = \left[ \begin{array}{c} {\mathbf G_1}\\[0.2cm] {\mathbf G_2} \end{array} \right] {\mathbf X} ;\qquad {\mathbf R}=\left[ \begin{array}{cc} {\mathbf R_1} & {\mathbf 0} \\[0.2cm] {\mathbf 0} & {\mathbf R_2} \end{array} \right] \qquad \mbox{(2)} }[/math]


where no correlation between the two measurement vectors [math]\displaystyle{ {\mathbf Y_1} }[/math] and [math]\displaystyle{ {\mathbf Y_2} }[/math] is assumed in matrix [math]\displaystyle{ {\mathbf R} }[/math].


From (3) and (4) (see Best Linear Unbiased Minimum-Variance Estimator (BLUE))

[math]\displaystyle{ \hat{\mathbf X}=({\mathbf G}^T\,{\mathbf R}^{-1}\,{\mathbf G})^{-1}{\mathbf G}^T\,{\mathbf R^{-1}}\,{\mathbf Y} \qquad \mbox{(3)} }[/math]
[math]\displaystyle{ {\mathbf P}=({\mathbf G}^T\,{\mathbf R}^{-1}\,{\mathbf G})^{-1} \qquad \mbox{(4)} }[/math]


it is easy to show that taking the corresponding augmented matrices [math]\displaystyle{ {\mathbf Y} }[/math] and [math]\displaystyle{ {\mathbf G} }[/math], the WLS solution of previous system (2) yields:

[math]\displaystyle{ \hat{\mathbf X}=\left [{\mathbf G_1}^T\,{\mathbf R_1}^{-1}\,{\mathbf G_1} + {\mathbf G_2}^T\,{\mathbf R_2}^{-1}\,{\mathbf G_2} \right ]^{-1} \left [{\mathbf G_1}^T\,{\mathbf R_1^{-1}}\,{\mathbf Y_1} + {\mathbf G_2}^T\,{\mathbf R_2^{-1}}\,{\mathbf Y_2} \right ] \qquad \mbox{(5)} }[/math]
[math]\displaystyle{ {\mathbf P}=\left [{\mathbf G_1}^T\,{\mathbf R_1}^{-1}\,{\mathbf G_1} + {\mathbf G_2}^T\,{\mathbf R_2}^{-1}\,{\mathbf G_2} \right ]^{-1} \qquad \mbox{(6)} }[/math]


Comments:

  • Recursive computation: From previous approach, the following recursive computation of estimate [math]\displaystyle{ {\mathbf X} }[/math] can be written:
[math]\displaystyle{ \begin{array}{rl} {\mathbf P_1}=&\left [ {\mathbf G_1}^T\,{\mathbf R_1}^{-1}\,{\mathbf G_1} \right ]^{-1}\\[0.2cm] \hat{\mathbf X}_{(1)}=&{\mathbf P_1} \cdot \left [{\mathbf G_1}^T\,{\mathbf R_1^{-1}}\,{\mathbf Y_1} \right ]\\[0.4cm] {\mathbf P_2}=&\left [{\mathbf P_1}^{-1}+ {\mathbf G_2}^T\,{\mathbf R_2}^{-1}\,{\mathbf G_2} \right ]^{-1}\\[0.2cm] \hat{\mathbf X}_{(2)}=& {\mathbf P_2} \cdot \left [{\mathbf P_1^{-1}}\,{\mathbf X_{(1)}} + {\mathbf G_2}^T\,{\mathbf R_2^{-1}}\,{\mathbf Y_2} \right ]\\ \end{array} \qquad \mbox{(7)} }[/math]


Note: If only the final estimate is desired, it is best not to process data sequentially using (7), but instead to apply (see Best Linear Unbiased Minimum-Variance Estimator (BLUE))
[math]\displaystyle{ \hat{\mathbf X}=({\mathbf G}^T\,{\mathbf R}^{-1}\,{\mathbf G})^{-1}{\mathbf G}^T\,{\mathbf R^{-1}}\,{\mathbf Y} \qquad \mbox{(8)} }[/math]
and (6), that accumulates the equations without solving until the end [Bierman, 1976] [1]. This could be especially useful in case of numerical instabilities, avoiding the propagation of the numerical inaccuracies along the recursive steps.


  • Constrains: A priory information can be added to the linear system (1) as constrain equations [math]\displaystyle{ {\mathbf \Lambda}={\mathbf A} {\mathbf X} }[/math] with a given weight [math]\displaystyle{ {\mathbf W}={\mathbf R_\Lambda}^{-1} }[/math]. Indeed:
[math]\displaystyle{ \begin{array}{l} {\mathbf Y}={\mathbf G}\,\,{\mathbf X}~;~{\mathbf R}\\[0.1cm] {\mathbf \Lambda}={\mathbf A}\,\,{\mathbf X}~;~{\mathbf R_\Lambda} \end{array} \qquad \mbox{(9)} }[/math]


References

  1. ^ [Bierman, 1976] Bierman, G., 1976. Factorization Methods fro Discrete Sequential estimation. Academic Press, New York, New York, USA.